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Abstract
Fast and efficient RPCs are key to the performance of ap-
plications based on microservices. But RPC communication
suffers from significant overhead today because it relies on
the standard, layered protocol stack and loose coupling be-
tween the end host and in-network proxies that process
RPCs. We propose delayering the RPC communication stack
and tightly coupling the end host and in-network process-
ing using high-level abstractions. This approach leads to
more efficient and performant RPC communication because
it eliminates many sources of overhead.
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1 Introduction
Modern cloud applications consist of hundreds to thousands
of microservices, often managed by a single organization or
tightly integrated teams. This architecture transforms what
were once simple function calls inside monolithic binaries
into remote procedure calls (RPCs) over the network.

RPC communication is enabled by exchanging structured
data, defined in a language like Protobuf [7], between clients
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Figure 1: RPC communication approaches.

and servers. It involves serializing the data, adding neces-
sary metadata (e.g., which RPC endpoint was invoked), and
delivering it while ensuring end-to-end properties such as
reliability and ordering. It also involves applying one or more
application network functions (ANFs) for tasks such as re-
quest routing, load balancing, security, and monitoring.
Today, RPC communication is typically achieved using a

layered stack of standard protocols, as shown in Figure 1a.
(We use gRPC [4] as an example; the stack is similar to other
RPC libraries such as Apache Dubbo [2].) End hosts rely
on gRPC, HTTP, TCP, and IP, and ANFs are implemented
as userspace HTTP proxies [3, 6]. Further, developers must
manually couple the host stack with ANFs as needed. If an
ANF needs to route requests based on the username field
of the RPC, the developer must add that information as a
custom HTTP header at the end host.
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This architecture leads to a significant "RPC tax" [28, 31],
stemming from two sources.
Standard, layered end host stack. Today’s RPC commu-
nications rely on standard and layered end host stacks. This
stack bundles features that are unnecessary for certain ap-
plications. For example, real-time applications with strict
latency requirements may not need in-order or reliable de-
livery but are still burdened by the overhead of TCP and
HTTP/2 [18, 25]. Even within the same application, different
RPC endpoints may have different transport requirements—
read operations might tolerate relaxed delivery, while write
operations demand strict reliability. The interactions be-
tween layers can also introduce performance issues. For
example, HTTP/2 multiplexes multiple RPCs over a single
TCP connection, but because TCP enforces in-order delivery,
a single lost packet blocks all subsequent data in the connec-
tion, resulting in head-of-line blocking for later RPCs [20].
Lastly, each layer adds its own headers, inflating on-wire
messages.
Loosely-coupled end host stack and ANFs. To enable
ANFs while remaining compatible with the standard inter-
faces, service meshes [6, 8, 9] have emerged as a popular
solution. In service meshes such as Istio [8] and Linkerd [6],
a userspace HTTP proxy is deployed alongside each service
instance or as a middlebox, intercepting and processing all
incoming and outgoing traffic, and metadata is encoded in
HTTP headers [9, 39]. These proxies terminate the TCP con-
nection and parse HTTP headers to implement the ANF’s
logic. While effective at providing rich functionality, this
design introduces substantial overhead—studies have shown
that service mesh proxies can increase the latency and CPU
overhead by up to 7x [27, 38] due to extra protocol and
header parsing, data copies, and context switches. The meta-
data (HTTP headers) for coupling the end host stack and
ANFs further increases header size and parsing overhead.

We propose delayering the RPC communication stack and
tightly coupling end host and ANF processing, as shown
in Figure 1b. By flattening the stack, we can eliminate re-
dundant features and streamline communication, which can
significantly increase performance and efficiency. By tightly
coupling end host and ANF processing, we can allow ANFs
to directly access RPC data without unnecessary decod-
ing, enabling lightweight, kernel-level, or even hardware-
accelerated processing.
To realize this vision, we propose a compiler-based ap-

proach that automatically generates optimized RPC com-
munication stacks and on-wire message layout. Application
developers specify RPC communication requirements at a
high level, including transport properties for each RPC end-
point (e.g., reliability, in-order delivery, priority) and their

ANFs (e.g., policies, routing, observability). Given these spec-
ifications and available in-network processing resources (e.g.,
SmartNICs and programmable switches), the compiler au-
tomatically determines which components should execute
in the end host stack and which should be delegated to the
in-network processor. By understanding how RPC metadata
and payloads are used across transport and in-network pro-
grams, we can format messages compactly and optimize
them for kernel or hardware-accelerated processing.
We can streamline RPC communication in this manner

only when both ends and ANFs are controlled by the same
organization or closely collaborative organizations, as is
common for cloud applications. Our approach can be imple-
mented via a shared RPC library to which different microser-
vices link. The applications may communicate externally as
well, with endpoints that use the traditional stack. We sup-
port such communication using gateways that are similar to
those used by service meshes today [5]. The gateways trans-
late between the standard stack and our custom protocol,
and our compiler will generate them automatically.

We are not arguing against software abstractions and mod-
ularity, but we are moving abstractions to a higher, speci-
fication layer, where we can iterate on them more rapidly.
Auto-generating flat implementations from those specifica-
tions allows us to avoid the overhead typically associated
with direct implementation of layered abstractions.

2 RPC Communication Overheads
Consider a key-value store microservice with two methods:
get and set. The get method retrieves the value of a given
key, and set updates the store with a new key-value pair.
For some applications, these two methods may have distinct
communication requirements. For instance, consider a load
manager that maintains the current load of different Web
server replicas. The replicas use set to update their load when
it changes substantially, while a load balancer periodically
uses get to retrieve the current load and select a target replica.
In this setting, occasional loss or delay of get requests or
responses may be acceptable, but the loss of set requests
or responses may result in an extended period of replica
overload.
Let us also assume that the application developer seeks

to apply two ANFs to all RPCs: (1) an application firewall
to block requests from certain users, based on the username
field, and (2) a session tracker that counts requests per ses-
sion, based on a session-id.
We implement the key-value store application in Go us-

ing four different underlying protocols: 1) UDP, 2) TCP, 3)
HTTP/2 (which uses TCP), and 4) gRPC (which uses HTTP/2
and TCP). We run the experiments on Ubuntu 20.04 ma-
chines with two Intel 10-core Xeon Gold 5215 CPUs and
256 GB RAM. In our experiments, each request or response
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Figure 2: Latency and header size for the key-value
store using different protocols. All messages in differ-
ent protocols are serialized with Protobuf.

is approximately 100 bytes, and the workload comprises
80% reads and 20% writes—a typical pattern in caching and
metadata-intensive services.

With today’s layered and loosely-coupled architecture, the
application faces significant performance inefficiencies:
End host stack. Independent of the actual requirements for
RPC endpoints, existing RPC communication uses the same
heavy-weight stack (i.e., gRPC, HTTP/2 and TCP). Figure 2a
shows the performance impact of using different protocols
for the key-value store application. Each layer (TCP, HTTP/2,
gRPC) adds non-negligible overhead to the end-to-end la-
tency: implementing the get endpoint with gRPC increases
latency by up to 448% compared to using UDP, a protocol
that still satisfies the requirements of get.

Further, RPC payloads today are wrapped in multiple lay-
ers of headers (IP, TCP, HTTP/2, gRPC), adding substantial
header overhead, as shown in Figure 2b. Similar to latency,
each layer in the stack adds considerable header overhead.
For example, using gRPC adds 133 bytes of header on top
of TCP in our experiments. A recent study [35] shows that
Twitter’s production clusters handle object sizes (key+value)
between 55-294 bytes, meaning all headers in a gRPC mes-
sage can add 42-79% overhead.
ANFs. To implement ANFs like the firewall and session
tracker, developers typically rely on service meshes, which
intercept traffic through HTTP-based userspace proxies such
as Envoy [3]. These proxies implement and exercise the full
protocol stack with the outer layers (TCP and HTTP), as
shown in Figure 1a: they terminate the incoming TCP con-
nection, parse and extract metadata from HTTP headers,
apply the desired ANF logic, and then establish a new con-
nection to the destination service. This design introduces
significant overhead due to context switching between ker-
nel and userspace, repeated protocol parsing, redundant data
copying, and serialization/deserialization operations. Prior
studies [27, 38] show that popular service meshes can reduce
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Figure 3: HTTP header parsing latency.

throughput, increase tail latency, and raise CPU utilization
by 1.27–7x compared to direct communication.
Worse, because of the loose coupling between service

mesh and end host stack, developers must insert metadata
required by ANFs as custom HTTP headers at the end host,
introducing additional HTTP parsing overhead [38]. This
parsing overhead grows with the number of headers, as
HTTP parsing scales poorly with increasing metadata. In
our study, deployments of Istio [8], a popular service mesh,
with observability, security, and routing features typically in-
clude over 20 headers per request (including default HTTP/2
headers, gRPC metadata, Istio-internal headers, and trac-
ing fields). As shown in Figure 3, adding 25 custom HTTP
headers increases parsing latency by 250 𝜇secs.
Non-portability. A promising way to reduce overhead
is to offload ANFs to the kernel (via eBPF), SmartNICs, or
programmable switches [1, 27, 33]. However, offloading is
challenging with the current protocol stack because, for any
in-network processors, they have to process and manage
multiple protocol layers, parse HTTP headers, and buffer the
network packets in case the RPC size exceeds MTU (maxi-
mum transmission unit). Further, common protocols such
as TCP (and its variants) impose reliability and congestion-
control mechanisms that complicate the interception and
transformation required by ANFs [14].

2.1 Existing Solutions

Prior work has explored these issues in isolation, focusing
either on optimizing the end host protocol stack or ANF
processing. However, these approaches have had limited
success in addressing the root causes of inefficiencies that
arise from a layered and loosely coupled architecture.
Optimizing the end host stack alone. Many propos-
als [10, 17, 18, 20, 25, 32] have focused on reducing the over-
head of the transport protocol, particularly TCP. Approaches
such as MTP [14] and NetRPC [36] employ custom transport
protocols to facilitate in-network computation programs.
While these methods effectively reduce transport overhead,
they are general-purpose and suffer from excessive features.
For example, both MTP and NetRPC guarantee messages
are reliably delivered, regardless of application requirements.
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NetBlocks [10] allows the application to customize the end
host stack and the message layout. However, they fail to ad-
dress the loose coupling between end host stack and ANFs.
Optimizing ANF processing alone. Other proposals have
focused on improving the performance of application net-
works [1, 12, 22, 34, 39]. For example, Cilium [1] offloads
simple, Layer 4 (transport) ANFs to the kernel using eBPF,
while Proxyless gRPC [19] and ServiceRouter [30] enable
in-process execution of network functions—before the RPC
stack at the client and after it at the server. AppNet [37, 39],
Lyra [12], and ClickINC [34] introduce new abstractions to
compile and optimize function placement. While these so-
lutions achieve performance gains in targeted areas, they
are still constrained by the existing layered protocol stack.
As a result, significant performance gains from streamlined
communication and ANF offloading remain untapped.
Coupling end host stack and ANFs. Recent works on
in-network computation co-design the end host stack and
ANFs. However, as discussed in §3, they suffer from high
development costs and poor reusability.
3 Redesigning RPC Communication
Given the limitations of enabling RPC communication using
general-purpose, layered, and loosely coupled architectures,
we propose a fundamental redesign that tightly integrates
all components of RPC communication. Instead of relying on
layered stacks, the end host and ANFs should operate on a
flattened, streamlined stack customized for each RPCmethod.
This stack is built directly on top of IP, which provides basic
connectivity between endpoints, while higher-level features
are tailored to the application’s needs.

We advocate for an approach that uses high-level specifi-
cations and compilers to enable such RPC communication.
To motivate this approach, we outline two alternatives.
Hand-coded, application-specific designs: One approach
is to manually design tightly integrated, custom-built sys-
tems tailored to specific applications. This approach involves
handcrafting each component—serialization, transport, and
ANFs—to meet precise performance and operational require-
ments. Recent in-network computation systems [15, 16, 21,
23, 32] exemplify this category. For example, NetCache [16]
introduces a custom message format and leverages a light-
weight transport protocol to enable an in-network caching
service between the client and the server. This design achieves
maximum performance by eliminating unnecessary abstrac-
tions and fine-tuning every component to the workload.
However, while this approach can deliver great performance,
it suffers from high development costs and is difficult to
adapt to new use cases or evolving workloads.
Broadened cross-layer interfaces: An alternative ap-
proach that prioritizes reusability is to extend the interfaces

between protocol layers, enabling richer contextual informa-
tion sharing. By extending APIs and headers, the serializa-
tion layer can communicate performance hints (e.g., priority,
consistency requirements) to the transport layer, allowing
network functions to adapt dynamically. This approach im-
proves interoperability and preserves the modularity of ex-
isting protocol stacks, allowing for incremental deployment
without the need for extensive redesign. However, broad-
ened interfaces remain fundamentally constrained by proto-
col standards, limiting the extent to which they can support
end-to-end, full-stack optimization. For example, TCP allows
optional headers (referred to as TCP options) to carry addi-
tional information, such as window scaling [13] or selective
acknowledgments [24]. However, these options are limited
by space (40 bytes) and their flexibility.
An approach based on a high-level language and an op-

timizing compiler offers a balanced solution between the
customization of hand-coded systems and the reusability of
broadened interfaces. It can deliver the performance ben-
efits of tightly integrated designs without the high devel-
opment cost and poor reusability of manual solutions. By
automatically generating optimized stacks based on appli-
cation requirements, a compiler-based system can eliminate
redundancy and enable seamless co-design of serialization,
communication properties, and ANFs. It can also easily adapt
to diverse workloads and deployment environments.

4 Key Research Questions

Realizing our approach requires answering a few key re-
search questions.
Q1: What abstractions should our DSL (domain-specific lan-
guage) provide to specify RPC communication requirements?
To enable developers to express application-specific com-
munication requirements, our DSL must provide expressive
yet concise abstractions. This includes the ability to express
end-to-end communication requirements such as reliability,
ordering, priority, and ANFs such as routing, load balancing,
and access control. The challenge is designing abstractions
that are flexible enough to support diverse application needs
while still being amenable to efficient compilation and a
range of optimizations.
Q2: How to generate efficient RPC communication stack im-
plementation? Generating high-performance RPC communi-
cation implementations requires translating high-level com-
munication specifications into optimized, low-level code that
minimizes the performance overhead. This involves several
challenges, such as eliminating redundant processing and
parsing and reducing protocol layering. The compiler must
also tailor the generated code to the target deployment en-
vironment, choosing between user-space, kernel-space, or
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in-network execution based on performance and resource
constraints.
Q3: How to enable lightweight ANF execution? As discussed
earlier, ANF execution today has high overhead because
the proxies must terminate transport connections and parse
HTTP headers, before any application-specific functionality
is executed. Can we get rid of this overhead while retaining
the full expressiveness of ANFs, such as access to message
content and the ability to transform or enforce policies on
RPCs? Addressing this challenge requires a compiler that can
generate custom message formats that expose the necessary
metadata to ANFs based on their functionality. We also need
to enable in-network processing of in-flight messages while
preserving transport semantics and application correctness.
Q4: How to coordinate end host stack and in-network pro-
cessors? Achieving seamless coordination between the end
host stack and in-network processors is crucial for efficient
execution. This requires mechanisms for partitioning func-
tionality across these components while maintaining correct-
ness and performance. Key challenges include defining clear
interfaces for state sharing, ensuring consistency of control
and data paths, and dynamically adapting to changes in net-
work conditions or application workloads. The system must
intelligently decide which ANFs to offload to in-network
devices and which to keep on the end host, balancing re-
source utilization, latency, and fault tolerance. Effective coor-
dination mechanisms must also handle heterogeneity across
programmable hardware and ensure portability across de-
ployment environments. Depending on ANF placement (e.g.,
on the end host via eBPF or in-network via programmable
switches), certain metadata may not need to be encoded in
the transmitted message. For example, when implementing
a session tracker on the client-side end host, the session ID
does not need to be included.

5 Proposed Solution

We outline a potential approach toward realizing our vision,
which partially answers the aforementioned questions.

5.1 Programming Abstractions

Developers express RPC communication requirements through
a high-level RPC communication specification, which cap-
tures both transport properties (e.g., reliability, in-order deliv-
ery) and application network functions (e.g., load balancing,
access control). We build on the abstractions provided by
AppNet [37, 39] and NetBlocks [10] as foundations.

AppNet is a DSL that enables developers to specify ANFs
using match-action rules that operate on RPC fields, state
variables, and built-in functions across both requests and
responses. This model simplifies complex operations such

as mutating, intercepting, reordering, and dynamically mod-
ifying RPCs. For the communication specification between
each pair of microservices, AppNet comprises a chain speci-
fication and corresponding element specifications. The chain
specification defines which network functions should be
invoked and their order of invocation. Each element speci-
fication includes four sections: a state section that declares
local or shared state variables, an init section for state initial-
ization, and req and resp sections that define match-action
rules for processing RPC requests and responses.

A key advantage of AppNet is its deployment transparency:
developers are not required to specify where (e.g., end host,
SmartNIC, programmable switch) or how ANFs are deployed.
The compiler automatically analyzes the input specification
and the available infrastructure to determine the optimal
placement of functions, ensuring efficient execution across
heterogeneous environments.
To further streamline development, we extend AppNet’s

DSL with NetBlocks for the developers to define end-to-end
communication properties alongside network functions us-
ing a unified syntax. NetBlocks is a DSL and a compiler
for designing ad-hoc protocols. It allows users to configure
transport requirements by selecting and customizing fea-
tures. Similar to NetBlocks, we provide a library of common
transport functions (e.g., reliability, RPC ordering) with tun-
able parameters, allowing developers to customize behavior
without implementing these features from scratch.

Figure 4 shows an example specification for the key-value
store application.

5.2 Custom RPC Layout and Transport

For lightweight ANF processing, without expensive trans-
port termination or header parsing, our compiler generates
a custom RPC layout that enables efficient processing of
messages “in flight“. Based on metadata usage in the App-
Net program and the application-defined RPC structure, the
compiler synthesizes a compact, fixed-format message lay-
out with statically known offsets, sizes, and alignment for
each metadata field and payload section. This design allows
ANFs—whether implemented in eBPF, P4, or userspace—to
inspect and manipulate messages cheaply.

In addition, today’s transport protocols (e.g., TCP, QUIC)
assume immutable, end-to-end byte streams and break down
when messages are delayed, mutated, intercepted, or re-
ordered byANFs. Inspired byMTP [14], our compiler-generated
protocol stack includes transport-layer logic that is aware
of potential message-level transformations and in-network
behavior. For instance, congestion control is ANF-aware and
can adapt to delays caused by ANFs. Likewise, reliability is
implemented at the message level using end-to-end acknowl-
edgments, avoiding reliance on byte-level sequence numbers
that are incompatible with mutable or intercepted messages.
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1 c l i en t : f i r e w a l l ( ) −> s e s s i on − t r a c k e r ( )
2 transport : i n o r d e r ( s t r a t e g y = " hold − f o r e v e r " )

−> r e l i a b l e ( )

(a) A chain specification for the set RPC endpoint.

1 s t a t e :
2 f i r e w a l l
3
4 i n i t ( ) :
5 se t ( f i r ew a l l , ' Kevin ' , ' Yes ' )
6 se t ( f i r ew a l l , ' P e t e r ' , 'No ' )
7
8
9 req ( rpc ) :
10 match get ( f i r ew a l l , get ( rpc , ' usrname ' ) ) :
11 Some ( pe rm i s s i on ) =>
12 match pe rm i s s i on :
13 ' Yes ' =>
14 send ( rpc , Down)
15 ' No ' =>
16 send ( e r r ( ' f i r e w a l l ' ) , Up )
17 None =>
18 send ( rpc , Down)
19
20 resp ( rpc ) :
21 send ( rpc , Up )

(b) The element specification for firewall.

Figure 4: Example communication specification for the set
endpoint.

Additionally, the custom transport supports multiple RPCs
in the same connection, as in HTTP/gRPC streams. Each
packet carries an RPC ID, and the compiler ensures that,
when possible, the first packet of an RPC contains all the
metadata required by ANFs. This enables early inspection
and processing without waiting for the entire message to be
received, reducing buffering overhead.

5.3 End host stack and ANF

Given the communication specification and the available
processing platforms (e.g., end hosts, SmartNICs, switches),
the compiler generates optimized code for both endpoint
protocol stacks and ANFs:
End host stack: Based on the communication properties
specified for each RPC method, the compiler generates a
highly optimized protocol stack at the end host. This stack
includes only the necessary features, avoiding unnecessary
layers and features, and is customized for each endpoint.
One challenge is the inflexibility of the Linux kernel network
stack, which limits customizability, whereas userspace stacks

compromise protection [26] and manageability [29]. To ad-
dress this, we leverage eTran [11], a customizable kernel
network stack built on eBPF. The generated stack integrates
with the XDP layer, a high-performance eBPF hook that pro-
cesses packets before they reach the socket layer, to ensure
low-latency execution.
ANFs : Beyond end-to-end communication properties, the
compiler translates AppNet’s application network specifica-
tions into optimized, target-specific code for in-network pro-
cessors, for example, P4 for programmable switches and eBPF
for kernel-space execution. The generated code is tightly
integrated with custom-generated RPC headers, enabling
efficient header extraction and processing on in-network
processors. When an ANF is placed on a client-side host
stack, the metadata used by it will be removed from on-wire
messages to reduce header overhead.

6 Conclusion
By tightly integrating RPC communication components via
a single abstraction, a compiler can automatically generate
an efficient communication stack that eliminates overhead
and streamlines data transfer. Additionally, the compiler pro-
duces an optimized RPC layout, enabling ANFs to execute
efficiently within the network, leveraging emerging kernel
and hardware acceleration platforms.
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