
Rethinking RPC Communication for
Microservices-based Applications

Xiangfeng Zhu[w] Yang Zhou[b] Yuyao Wang[w] Xiangyu Gao[w] Arvind Krishnamurthy[w]

Sam Kumar[l] Ratul Mahajan[w] Danyang Zhuo[d]

[w]University of Washington [l]UCLA [d]Duke University [b]UC Berkeley and UC Davis

Abstract
Fast and efficient RPCs are key to the performance of ap-
plications based on microservices. But RPC communication
suffers from significant overhead today because it relies on
the standard, layered protocol stack and loose coupling be-
tween the end host and in-network proxies that process
RPCs. We propose delayering the RPC communication stack
and tightly coupling the end host and in-network process-
ing using high-level abstractions. This approach leads to
more efficient and performant RPC communication because
it eliminates many sources of overhead.

CCS Concepts
• Networks → Programming interfaces; Cross-layer
protocols; Data center networks.

Keywords
Application Networks, Microservices, RPC
ACM Reference Format:
Xiangfeng Zhu, Yang Zhou, Yuyao Wang, Xiangyu Gao, Arvind
Krishnamurthy, Sam Kumar, Ratul Mahajan, Danyang Zhuo. 2025.
Rethinking RPC Communication for Microservices-based Appli-
cations. In Workshop on Hot Topics in Operating Systems (HOTOS
’25), May 14–16, 2025, Banff, AB, Canada. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3713082.3730375

1 Introduction
Modern cloud applications consist of hundreds to thousands
of microservices, often managed by a single organization or
tightly integrated teams. This architecture transforms what
were once simple function calls inside monolithic binaries
into remote procedure calls (RPCs) over the network.

RPC communication is enabled by exchanging structured
data, defined in a language like Protobuf [7], between clients

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
HOTOS ’25, Banff, AB, Canada
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1475-7/2025/05
https://doi.org/10.1145/3713082.3730375

HTTP

TCP

IP

HTTP

TCP

IP

ANFs

TCP

IP

gRPC gRPC

App

HTTP

Proto
App

Proto

(a) Today’s RPC communication.

IP IP

ANFs

IP

App
Proto

App
Proto

Host
Processing
（Transport+ANF)

Host
Processing
（Transport+ANF)

(b) Proposed RPC communication approach. ANFs can be part
of the host processing or in a separate in-network proxy.

Figure 1: RPC communication approaches.

and servers. It involves serializing the data, adding neces-
sary metadata (e.g., which RPC endpoint was invoked), and
delivering it while ensuring end-to-end properties such as
reliability and ordering. It also involves applying one or more
application network functions (ANFs) for tasks such as re-
quest routing, load balancing, security, and monitoring.
Today, RPC communication is typically achieved using a

layered stack of standard protocols, as shown in Figure 1a.
(We use gRPC [4] as an example; the stack is similar to other
RPC libraries such as Apache Dubbo [2].) End hosts rely
on gRPC, HTTP, TCP, and IP, and ANFs are implemented
as userspace HTTP proxies [3, 6]. Further, developers must
manually couple the host stack with ANFs as needed. If an
ANF needs to route requests based on the username field
of the RPC, the developer must add that information as a
custom HTTP header at the end host.

1

https://doi.org/10.1145/3713082.3730375
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3713082.3730375

HOTOS ’25, May 14–16, 2025, Banff, AB, Canada Zhu et al.

This architecture leads to a significant "RPC tax" [28, 31],
stemming from two sources.
Standard, layered end host stack. Today’s RPC commu-
nications rely on standard and layered end host stacks. This
stack bundles features that are unnecessary for certain ap-
plications. For example, real-time applications with strict
latency requirements may not need in-order or reliable de-
livery but are still burdened by the overhead of TCP and
HTTP/2 [18, 25]. Even within the same application, different
RPC endpoints may have different transport requirements—
read operations might tolerate relaxed delivery, while write
operations demand strict reliability. The interactions be-
tween layers can also introduce performance issues. For
example, HTTP/2 multiplexes multiple RPCs over a single
TCP connection, but because TCP enforces in-order delivery,
a single lost packet blocks all subsequent data in the connec-
tion, resulting in head-of-line blocking for later RPCs [20].
Lastly, each layer adds its own headers, inflating on-wire
messages.
Loosely-coupled end host stack and ANFs. To enable
ANFs while remaining compatible with the standard inter-
faces, service meshes [6, 8, 9] have emerged as a popular
solution. In service meshes such as Istio [8] and Linkerd [6],
a userspace HTTP proxy is deployed alongside each service
instance or as a middlebox, intercepting and processing all
incoming and outgoing traffic, and metadata is encoded in
HTTP headers [9, 39]. These proxies terminate the TCP con-
nection and parse HTTP headers to implement the ANF’s
logic. While effective at providing rich functionality, this
design introduces substantial overhead—studies have shown
that service mesh proxies can increase the latency and CPU
overhead by up to 7x [27, 38] due to extra protocol and
header parsing, data copies, and context switches. The meta-
data (HTTP headers) for coupling the end host stack and
ANFs further increases header size and parsing overhead.

We propose delayering the RPC communication stack and
tightly coupling end host and ANF processing, as shown
in Figure 1b. By flattening the stack, we can eliminate re-
dundant features and streamline communication, which can
significantly increase performance and efficiency. By tightly
coupling end host and ANF processing, we can allow ANFs
to directly access RPC data without unnecessary decod-
ing, enabling lightweight, kernel-level, or even hardware-
accelerated processing.
To realize this vision, we propose a compiler-based ap-

proach that automatically generates optimized RPC com-
munication stacks and on-wire message layout. Application
developers specify RPC communication requirements at a
high level, including transport properties for each RPC end-
point (e.g., reliability, in-order delivery, priority) and their

ANFs (e.g., policies, routing, observability). Given these spec-
ifications and available in-network processing resources (e.g.,
SmartNICs and programmable switches), the compiler au-
tomatically determines which components should execute
in the end host stack and which should be delegated to the
in-network processor. By understanding how RPC metadata
and payloads are used across transport and in-network pro-
grams, we can format messages compactly and optimize
them for kernel or hardware-accelerated processing.
We can streamline RPC communication in this manner

only when both ends and ANFs are controlled by the same
organization or closely collaborative organizations, as is
common for cloud applications. Our approach can be imple-
mented via a shared RPC library to which different microser-
vices link. The applications may communicate externally as
well, with endpoints that use the traditional stack. We sup-
port such communication using gateways that are similar to
those used by service meshes today [5]. The gateways trans-
late between the standard stack and our custom protocol,
and our compiler will generate them automatically.

We are not arguing against software abstractions and mod-
ularity, but we are moving abstractions to a higher, speci-
fication layer, where we can iterate on them more rapidly.
Auto-generating flat implementations from those specifica-
tions allows us to avoid the overhead typically associated
with direct implementation of layered abstractions.

2 RPC Communication Overheads
Consider a key-value store microservice with two methods:
get and set. The get method retrieves the value of a given
key, and set updates the store with a new key-value pair.
For some applications, these two methods may have distinct
communication requirements. For instance, consider a load
manager that maintains the current load of different Web
server replicas. The replicas use set to update their load when
it changes substantially, while a load balancer periodically
uses get to retrieve the current load and select a target replica.
In this setting, occasional loss or delay of get requests or
responses may be acceptable, but the loss of set requests
or responses may result in an extended period of replica
overload.
Let us also assume that the application developer seeks

to apply two ANFs to all RPCs: (1) an application firewall
to block requests from certain users, based on the username
field, and (2) a session tracker that counts requests per ses-
sion, based on a session-id.
We implement the key-value store application in Go us-

ing four different underlying protocols: 1) UDP, 2) TCP, 3)
HTTP/2 (which uses TCP), and 4) gRPC (which uses HTTP/2
and TCP). We run the experiments on Ubuntu 20.04 ma-
chines with two Intel 10-core Xeon Gold 5215 CPUs and
256 GB RAM. In our experiments, each request or response

2

Rethinking RPC Communication for Microservices-based Applications HOTOS ’25, May 14–16, 2025, Banff, AB, Canada

UDP TCP HTTP2 gRPC
0

200

400

600

800

1000

1200

La
te

nc
y

(u
s)

(a) Latency

UDP TCP HTTP2 gRPC
0

50

100

150

200

He
ad

er
 S

ize
 (b

yt
es

)
(b) Headers

Figure 2: Latency and header size for the key-value
store using different protocols. All messages in differ-
ent protocols are serialized with Protobuf.

is approximately 100 bytes, and the workload comprises
80% reads and 20% writes—a typical pattern in caching and
metadata-intensive services.

With today’s layered and loosely-coupled architecture, the
application faces significant performance inefficiencies:
End host stack. Independent of the actual requirements for
RPC endpoints, existing RPC communication uses the same
heavy-weight stack (i.e., gRPC, HTTP/2 and TCP). Figure 2a
shows the performance impact of using different protocols
for the key-value store application. Each layer (TCP, HTTP/2,
gRPC) adds non-negligible overhead to the end-to-end la-
tency: implementing the get endpoint with gRPC increases
latency by up to 448% compared to using UDP, a protocol
that still satisfies the requirements of get.

Further, RPC payloads today are wrapped in multiple lay-
ers of headers (IP, TCP, HTTP/2, gRPC), adding substantial
header overhead, as shown in Figure 2b. Similar to latency,
each layer in the stack adds considerable header overhead.
For example, using gRPC adds 133 bytes of header on top
of TCP in our experiments. A recent study [35] shows that
Twitter’s production clusters handle object sizes (key+value)
between 55-294 bytes, meaning all headers in a gRPC mes-
sage can add 42-79% overhead.
ANFs. To implement ANFs like the firewall and session
tracker, developers typically rely on service meshes, which
intercept traffic through HTTP-based userspace proxies such
as Envoy [3]. These proxies implement and exercise the full
protocol stack with the outer layers (TCP and HTTP), as
shown in Figure 1a: they terminate the incoming TCP con-
nection, parse and extract metadata from HTTP headers,
apply the desired ANF logic, and then establish a new con-
nection to the destination service. This design introduces
significant overhead due to context switching between ker-
nel and userspace, repeated protocol parsing, redundant data
copying, and serialization/deserialization operations. Prior
studies [27, 38] show that popular service meshes can reduce

HTTP(10) HTTP(25) HTTP(50)
0

100

200

300

400

La
te
nc
y(
us
)

Figure 3: HTTP header parsing latency.

throughput, increase tail latency, and raise CPU utilization
by 1.27–7x compared to direct communication.
Worse, because of the loose coupling between service

mesh and end host stack, developers must insert metadata
required by ANFs as custom HTTP headers at the end host,
introducing additional HTTP parsing overhead [38]. This
parsing overhead grows with the number of headers, as
HTTP parsing scales poorly with increasing metadata. In
our study, deployments of Istio [8], a popular service mesh,
with observability, security, and routing features typically in-
clude over 20 headers per request (including default HTTP/2
headers, gRPC metadata, Istio-internal headers, and trac-
ing fields). As shown in Figure 3, adding 25 custom HTTP
headers increases parsing latency by 250 𝜇secs.
Non-portability. A promising way to reduce overhead
is to offload ANFs to the kernel (via eBPF), SmartNICs, or
programmable switches [1, 27, 33]. However, offloading is
challenging with the current protocol stack because, for any
in-network processors, they have to process and manage
multiple protocol layers, parse HTTP headers, and buffer the
network packets in case the RPC size exceeds MTU (maxi-
mum transmission unit). Further, common protocols such
as TCP (and its variants) impose reliability and congestion-
control mechanisms that complicate the interception and
transformation required by ANFs [14].

2.1 Existing Solutions

Prior work has explored these issues in isolation, focusing
either on optimizing the end host protocol stack or ANF
processing. However, these approaches have had limited
success in addressing the root causes of inefficiencies that
arise from a layered and loosely coupled architecture.
Optimizing the end host stack alone. Many propos-
als [10, 17, 18, 20, 25, 32] have focused on reducing the over-
head of the transport protocol, particularly TCP. Approaches
such as MTP [14] and NetRPC [36] employ custom transport
protocols to facilitate in-network computation programs.
While these methods effectively reduce transport overhead,
they are general-purpose and suffer from excessive features.
For example, both MTP and NetRPC guarantee messages
are reliably delivered, regardless of application requirements.

3

HOTOS ’25, May 14–16, 2025, Banff, AB, Canada Zhu et al.

NetBlocks [10] allows the application to customize the end
host stack and the message layout. However, they fail to ad-
dress the loose coupling between end host stack and ANFs.
Optimizing ANF processing alone. Other proposals have
focused on improving the performance of application net-
works [1, 12, 22, 34, 39]. For example, Cilium [1] offloads
simple, Layer 4 (transport) ANFs to the kernel using eBPF,
while Proxyless gRPC [19] and ServiceRouter [30] enable
in-process execution of network functions—before the RPC
stack at the client and after it at the server. AppNet [37, 39],
Lyra [12], and ClickINC [34] introduce new abstractions to
compile and optimize function placement. While these so-
lutions achieve performance gains in targeted areas, they
are still constrained by the existing layered protocol stack.
As a result, significant performance gains from streamlined
communication and ANF offloading remain untapped.
Coupling end host stack and ANFs. Recent works on
in-network computation co-design the end host stack and
ANFs. However, as discussed in §3, they suffer from high
development costs and poor reusability.
3 Redesigning RPC Communication
Given the limitations of enabling RPC communication using
general-purpose, layered, and loosely coupled architectures,
we propose a fundamental redesign that tightly integrates
all components of RPC communication. Instead of relying on
layered stacks, the end host and ANFs should operate on a
flattened, streamlined stack customized for each RPCmethod.
This stack is built directly on top of IP, which provides basic
connectivity between endpoints, while higher-level features
are tailored to the application’s needs.

We advocate for an approach that uses high-level specifi-
cations and compilers to enable such RPC communication.
To motivate this approach, we outline two alternatives.
Hand-coded, application-specific designs: One approach
is to manually design tightly integrated, custom-built sys-
tems tailored to specific applications. This approach involves
handcrafting each component—serialization, transport, and
ANFs—to meet precise performance and operational require-
ments. Recent in-network computation systems [15, 16, 21,
23, 32] exemplify this category. For example, NetCache [16]
introduces a custom message format and leverages a light-
weight transport protocol to enable an in-network caching
service between the client and the server. This design achieves
maximum performance by eliminating unnecessary abstrac-
tions and fine-tuning every component to the workload.
However, while this approach can deliver great performance,
it suffers from high development costs and is difficult to
adapt to new use cases or evolving workloads.
Broadened cross-layer interfaces: An alternative ap-
proach that prioritizes reusability is to extend the interfaces

between protocol layers, enabling richer contextual informa-
tion sharing. By extending APIs and headers, the serializa-
tion layer can communicate performance hints (e.g., priority,
consistency requirements) to the transport layer, allowing
network functions to adapt dynamically. This approach im-
proves interoperability and preserves the modularity of ex-
isting protocol stacks, allowing for incremental deployment
without the need for extensive redesign. However, broad-
ened interfaces remain fundamentally constrained by proto-
col standards, limiting the extent to which they can support
end-to-end, full-stack optimization. For example, TCP allows
optional headers (referred to as TCP options) to carry addi-
tional information, such as window scaling [13] or selective
acknowledgments [24]. However, these options are limited
by space (40 bytes) and their flexibility.
An approach based on a high-level language and an op-

timizing compiler offers a balanced solution between the
customization of hand-coded systems and the reusability of
broadened interfaces. It can deliver the performance ben-
efits of tightly integrated designs without the high devel-
opment cost and poor reusability of manual solutions. By
automatically generating optimized stacks based on appli-
cation requirements, a compiler-based system can eliminate
redundancy and enable seamless co-design of serialization,
communication properties, and ANFs. It can also easily adapt
to diverse workloads and deployment environments.

4 Key Research Questions

Realizing our approach requires answering a few key re-
search questions.
Q1: What abstractions should our DSL (domain-specific lan-
guage) provide to specify RPC communication requirements?
To enable developers to express application-specific com-
munication requirements, our DSL must provide expressive
yet concise abstractions. This includes the ability to express
end-to-end communication requirements such as reliability,
ordering, priority, and ANFs such as routing, load balancing,
and access control. The challenge is designing abstractions
that are flexible enough to support diverse application needs
while still being amenable to efficient compilation and a
range of optimizations.
Q2: How to generate efficient RPC communication stack im-
plementation? Generating high-performance RPC communi-
cation implementations requires translating high-level com-
munication specifications into optimized, low-level code that
minimizes the performance overhead. This involves several
challenges, such as eliminating redundant processing and
parsing and reducing protocol layering. The compiler must
also tailor the generated code to the target deployment en-
vironment, choosing between user-space, kernel-space, or

4

Rethinking RPC Communication for Microservices-based Applications HOTOS ’25, May 14–16, 2025, Banff, AB, Canada

in-network execution based on performance and resource
constraints.
Q3: How to enable lightweight ANF execution? As discussed
earlier, ANF execution today has high overhead because
the proxies must terminate transport connections and parse
HTTP headers, before any application-specific functionality
is executed. Can we get rid of this overhead while retaining
the full expressiveness of ANFs, such as access to message
content and the ability to transform or enforce policies on
RPCs? Addressing this challenge requires a compiler that can
generate custom message formats that expose the necessary
metadata to ANFs based on their functionality. We also need
to enable in-network processing of in-flight messages while
preserving transport semantics and application correctness.
Q4: How to coordinate end host stack and in-network pro-
cessors? Achieving seamless coordination between the end
host stack and in-network processors is crucial for efficient
execution. This requires mechanisms for partitioning func-
tionality across these components while maintaining correct-
ness and performance. Key challenges include defining clear
interfaces for state sharing, ensuring consistency of control
and data paths, and dynamically adapting to changes in net-
work conditions or application workloads. The system must
intelligently decide which ANFs to offload to in-network
devices and which to keep on the end host, balancing re-
source utilization, latency, and fault tolerance. Effective coor-
dination mechanisms must also handle heterogeneity across
programmable hardware and ensure portability across de-
ployment environments. Depending on ANF placement (e.g.,
on the end host via eBPF or in-network via programmable
switches), certain metadata may not need to be encoded in
the transmitted message. For example, when implementing
a session tracker on the client-side end host, the session ID
does not need to be included.

5 Proposed Solution

We outline a potential approach toward realizing our vision,
which partially answers the aforementioned questions.

5.1 Programming Abstractions

Developers express RPC communication requirements through
a high-level RPC communication specification, which cap-
tures both transport properties (e.g., reliability, in-order deliv-
ery) and application network functions (e.g., load balancing,
access control). We build on the abstractions provided by
AppNet [37, 39] and NetBlocks [10] as foundations.

AppNet is a DSL that enables developers to specify ANFs
using match-action rules that operate on RPC fields, state
variables, and built-in functions across both requests and
responses. This model simplifies complex operations such

as mutating, intercepting, reordering, and dynamically mod-
ifying RPCs. For the communication specification between
each pair of microservices, AppNet comprises a chain speci-
fication and corresponding element specifications. The chain
specification defines which network functions should be
invoked and their order of invocation. Each element speci-
fication includes four sections: a state section that declares
local or shared state variables, an init section for state initial-
ization, and req and resp sections that define match-action
rules for processing RPC requests and responses.

A key advantage of AppNet is its deployment transparency:
developers are not required to specify where (e.g., end host,
SmartNIC, programmable switch) or how ANFs are deployed.
The compiler automatically analyzes the input specification
and the available infrastructure to determine the optimal
placement of functions, ensuring efficient execution across
heterogeneous environments.
To further streamline development, we extend AppNet’s

DSL with NetBlocks for the developers to define end-to-end
communication properties alongside network functions us-
ing a unified syntax. NetBlocks is a DSL and a compiler
for designing ad-hoc protocols. It allows users to configure
transport requirements by selecting and customizing fea-
tures. Similar to NetBlocks, we provide a library of common
transport functions (e.g., reliability, RPC ordering) with tun-
able parameters, allowing developers to customize behavior
without implementing these features from scratch.

Figure 4 shows an example specification for the key-value
store application.

5.2 Custom RPC Layout and Transport

For lightweight ANF processing, without expensive trans-
port termination or header parsing, our compiler generates
a custom RPC layout that enables efficient processing of
messages “in flight“. Based on metadata usage in the App-
Net program and the application-defined RPC structure, the
compiler synthesizes a compact, fixed-format message lay-
out with statically known offsets, sizes, and alignment for
each metadata field and payload section. This design allows
ANFs—whether implemented in eBPF, P4, or userspace—to
inspect and manipulate messages cheaply.

In addition, today’s transport protocols (e.g., TCP, QUIC)
assume immutable, end-to-end byte streams and break down
when messages are delayed, mutated, intercepted, or re-
ordered byANFs. Inspired byMTP [14], our compiler-generated
protocol stack includes transport-layer logic that is aware
of potential message-level transformations and in-network
behavior. For instance, congestion control is ANF-aware and
can adapt to delays caused by ANFs. Likewise, reliability is
implemented at the message level using end-to-end acknowl-
edgments, avoiding reliance on byte-level sequence numbers
that are incompatible with mutable or intercepted messages.

5

HOTOS ’25, May 14–16, 2025, Banff, AB, Canada Zhu et al.

1 c l i en t : f i r e w a l l () −> s e s s i on − t r a c k e r ()
2 transport : i n o r d e r (s t r a t e g y = " hold − f o r e v e r ")

−> r e l i a b l e ()

(a) A chain specification for the set RPC endpoint.

1 s t a t e :
2 f i r e w a l l
3
4 i n i t () :
5 se t (f i r ew a l l , ' Kevin ' , ' Yes ')
6 se t (f i r ew a l l , ' P e t e r ' , 'No ')
7
8
9 req (rpc) :
10 match get (f i r ew a l l , get (rpc , ' usrname ')) :
11 Some (pe rm i s s i on) =>
12 match pe rm i s s i on :
13 ' Yes ' =>
14 send (rpc , Down)
15 ' No ' =>
16 send (e r r (' f i r e w a l l ') , Up)
17 None =>
18 send (rpc , Down)
19
20 resp (rpc) :
21 send (rpc , Up)

(b) The element specification for firewall.

Figure 4: Example communication specification for the set
endpoint.

Additionally, the custom transport supports multiple RPCs
in the same connection, as in HTTP/gRPC streams. Each
packet carries an RPC ID, and the compiler ensures that,
when possible, the first packet of an RPC contains all the
metadata required by ANFs. This enables early inspection
and processing without waiting for the entire message to be
received, reducing buffering overhead.

5.3 End host stack and ANF

Given the communication specification and the available
processing platforms (e.g., end hosts, SmartNICs, switches),
the compiler generates optimized code for both endpoint
protocol stacks and ANFs:
End host stack: Based on the communication properties
specified for each RPC method, the compiler generates a
highly optimized protocol stack at the end host. This stack
includes only the necessary features, avoiding unnecessary
layers and features, and is customized for each endpoint.
One challenge is the inflexibility of the Linux kernel network
stack, which limits customizability, whereas userspace stacks

compromise protection [26] and manageability [29]. To ad-
dress this, we leverage eTran [11], a customizable kernel
network stack built on eBPF. The generated stack integrates
with the XDP layer, a high-performance eBPF hook that pro-
cesses packets before they reach the socket layer, to ensure
low-latency execution.
ANFs : Beyond end-to-end communication properties, the
compiler translates AppNet’s application network specifica-
tions into optimized, target-specific code for in-network pro-
cessors, for example, P4 for programmable switches and eBPF
for kernel-space execution. The generated code is tightly
integrated with custom-generated RPC headers, enabling
efficient header extraction and processing on in-network
processors. When an ANF is placed on a client-side host
stack, the metadata used by it will be removed from on-wire
messages to reduce header overhead.

6 Conclusion
By tightly integrating RPC communication components via
a single abstraction, a compiler can automatically generate
an efficient communication stack that eliminates overhead
and streamlines data transfer. Additionally, the compiler pro-
duces an optimized RPC layout, enabling ANFs to execute
efficiently within the network, leveraging emerging kernel
and hardware acceleration platforms.

Acknowledgments
We would like to thank the anonymous reviewers for their
helpful feedback. This work is supported in part by UW FOCI
and its partners (Alibaba, Amazon, Cisco, Google, Microsoft,
and VMware), by NSF Grants 2402695 and 2402696, and by
ACE, a center that is part of DARPA’s JUMP 2.0. Yang Zhou
is supported by the UC Berkeley Sky Computing Lab.

References
[1] [n.d.]. Cilium Service Mesh. https://cilium.io/use-cases/service-mesh/.

(Accessed on 04/13/2025).
[2] [n.d.]. Dubbo: A Cloud-Native Microservice Framework. https://dubbo.

apache.org/. (Accessed on 04/13/2025).
[3] [n.d.]. Envoy. https://www.envoyproxy.io/. (Accessed on 04/13/2025).
[4] [n.d.]. gRPC: A high performance, open source universal RPC frame-

work. https://grpc.io. (Accessed on 04/13/2025).
[5] [n.d.]. Ingress Gateways. https://istio.io/latest/docs/tasks/traffic-

management/ingress/ingress-control/. (Accessed on 04/13/2025).
[6] [n.d.]. Linkerd: the world’s most advanced service mesh. https://

linkerd.io/. (Accessed on 04/13/2025).
[7] [n.d.]. Protocol Buffers. https://protobuf.dev/. (Accessed on

04/13/2025).
[8] [n.d.]. The Istio Service Mesh. https://istio.io/. (Accessed on

04/13/2025).
[9] Sachin Ashok, P Brighten Godfrey, and Radhika Mittal. 2021. Leverag-

ing service meshes as a new network layer. In Proceedings of the 20th
ACM Workshop on Hot Topics in Networks. 229–236.

[10] Ajay Brahmakshatriya, Chris Rinard, Manya Ghobadi, and Saman
Amarasinghe. 2024. NetBlocks: Staging Layouts for High-Performance

6

https://cilium.io/use-cases/service-mesh/
https://dubbo.apache.org/
https://dubbo.apache.org/
https://www.envoyproxy.io/
https://grpc.io
https://istio.io/latest/docs/tasks/traffic-management/ingress/ingress-control/
https://istio.io/latest/docs/tasks/traffic-management/ingress/ingress-control/
https://linkerd.io/
https://linkerd.io/
https://protobuf.dev/
https://istio.io/

Rethinking RPC Communication for Microservices-based Applications HOTOS ’25, May 14–16, 2025, Banff, AB, Canada

Custom Host Network Stacks. Proceedings of the ACM on Programming
Languages 8, PLDI (2024), 467–491.

[11] Zhongjie Chen, QingkaiMeng, ChonLam Lao, Yifan Liu, Fengyuan Ren,
Minlan Yu, and Yang Zhou. 2025. eTran: Extensible Kernel Transport
with eBPF. In 22nd USENIX Symposium on Networked Systems Design
and Implementation (NSDI 25).

[12] Jiaqi Gao, Ennan Zhai, Hongqiang Harry Liu, Rui Miao, Yu Zhou,
Bingchuan Tian, Chen Sun, Dennis Cai, Ming Zhang, and Minlan Yu.
2020. Lyra: A cross-platform language and compiler for data plane
programming on heterogeneous asics. In Proceedings of the Annual
conference of the ACM Special Interest Group on Data Communication on
the applications, technologies, architectures, and protocols for computer
communication. 435–450.

[13] Van Jacobson, Robert Braden, and David Borman. 1992. TCP extensions
for high performance. Technical Report.

[14] Tao Ji, Rohan Vardekar, Balajee Vamanan, Brent E. Stephens, and
Aditya Akella. 2025. MTP: Transport for In-Network Computing. In
22nd USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 25).

[15] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert
Soulé, Changhoon Kim, and Ion Stoica. 2018. {NetChain}:{Scale-
Free}{Sub-RTT} coordination. In 15th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 18). 35–49.

[16] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate
Foster, Changhoon Kim, and Ion Stoica. 2017. Netcache: Balancing
key-value stores with fast in-network caching. In Proceedings of the
26th Symposium on Operating Systems Principles. 121–136.

[17] Anuj Kalia, Michael Kaminsky, and David Andersen. 2019. Datacenter
RPCs can be general and fast. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19). 1–16.

[18] Marios Kogias, George Prekas, Adrien Ghosn, Jonas Fietz, and Edouard
Bugnion. 2019. R2P2: Making RPCs first-class datacenter citizens. In
2019 USENIX Annual Technical Conference (USENIX ATC 19). 863–880.

[19] Steven Landow. 2021. gRPC Proxyless Service Mesh. https://istio.io/
latest/blog/2021/proxyless-grpc/.

[20] AdamLangley, Alistair Riddoch, AlyssaWilk, Antonio Vicente, Charles
Krasic, Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan
Iyengar, et al. 2017. The quic transport protocol: Design and internet-
scale deployment. In Proceedings of the conference of the ACM special
interest group on data communication. 183–196.

[21] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi Chen, Wenfei Wu,
Aditya Akella, and Michael Swift. 2021. ATP: In-network aggregation
for multi-tenant learning. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 21). 741–761.

[22] Hao Li, Changhao Wu, Guangda Sun, Peng Zhang, Danfeng Shan,
Tian Pan, and Chengchen Hu. 2021. Programming network stack for
middleboxes with Rubik. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 21). 551–570.

[23] Jialin Li, Jacob Nelson, Ellis Michael, Xin Jin, and Dan RK Ports. 2020.
Pegasus: Tolerating skewed workloads in distributed storage with
{In-Network} coherence directories. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20). 387–406.

[24] Matt Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn Romanow. 1996.
TCP selective acknowledgment options. Technical Report.

[25] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ouster-
hout. 2018. Homa: A receiver-driven low-latency transport protocol
using network priorities. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication. 221–235.

[26] Simon Peter, Jialin Li, Irene Zhang, Dan RK Ports, Doug Woos, Arvind
Krishnamurthy, Thomas Anderson, and Timothy Roscoe. 2015. Arrakis:
The Operating System is the Control Plane. ACM Transactions on
Computer Systems (TOCS) 33, 4 (2015), 1–30.

[27] Shixiong Qi, Leslie Monis, Ziteng Zeng, Ian-chin Wang, and KK Ra-
makrishnan. 2022. Spright: Extracting the server from serverless com-
puting! high-performance ebpf-based event-driven, shared-memory
processing. In Proceedings of the ACM SIGCOMM 2022 Conference. 780–
794.

[28] Mubashir Adnan Qureshi, Junhua Yan, Yuchung Cheng, Soheil Hassas
Yeganeh, Yousuk Seung, Neal Cardwell, Willem De Bruijn, Van Jacob-
son, Jasleen Kaur, David Wetherall, et al. 2023. Fathom: Understanding
Datacenter Application Network Performance. In Proceedings of the
ACM SIGCOMM 2023 Conference. 394–405.

[29] Hugo Sadok, Zhipeng Zhao, Valerie Choung, Nirav Atre, Daniel S
Berger, James C Hoe, Aurojit Panda, and Justine Sherry. 2021. We need
kernel interposition over the network dataplane. In Proceedings of the
Workshop on Hot Topics in Operating Systems. 152–158.

[30] Harshit Saokar, Soteris Demetriou, Nick Magerko, Max Kontorovich,
Josh Kirstein, Margot Leibold, Dimitrios Skarlatos, Hitesh Khandelwal,
and Chunqiang Tang. 2023. {ServiceRouter}: Hyperscale and minimal
cost service mesh at meta. In 17th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 23). 969–985.

[31] Korakit Seemakhupt, Brent E Stephens, Samira Khan, Sihang Liu, Has-
san Wassel, Soheil Hassas Yeganeh, Alex C Snoeren, Arvind Krish-
namurthy, David E Culler, and Henry M Levy. 2023. A cloud-scale
characterization of remote procedure calls. In Proceedings of the 29th
Symposium on Operating Systems Principles. 498–514.

[32] Hao Wang, Han Tian, Jingrong Chen, Xinchen Wan, Jiacheng Xia,
Gaoxiong Zeng, Wei Bai, Junchen Jiang, Yong Wang, and Kai Chen.
2024. Towards Domain-Specific Network Transport for Distributed
DNN Training. In 21st USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 24). 1421–1443.

[33] Tao Wang, Jinkun Lin, Gianni Antichi, Aurojit Panda, and Anirudh
Sivaraman. 2023. Application-Defined Receive Side Dispatching on
the NIC. arXiv preprint arXiv:2312.04857 (2023).

[34] Wenquan Xu, Zijian Zhang, Yong Feng, Haoyu Song, Zhikang Chen,
Wenfei Wu, Guyue Liu, Yinchao Zhang, Shuxin Liu, Zerui Tian, et al.
2023. Clickinc: In-network computing as a service in heterogeneous
programmable data-center networks. In Proceedings of the ACM SIG-
COMM 2023 Conference. 798–815.

[35] Juncheng Yang, Yao Yue, and KV Rashmi. 2021. A large-scale analysis
of hundreds of in-memory key-value cache clusters at twitter. ACM
Transactions on Storage (TOS) 17, 3 (2021), 1–35.

[36] Bohan Zhao, Wenfei Wu, and Wei Xu. 2023. NetRPC: Enabling In-
Network computation in remote procedure calls. In 20th USENIX sym-
posium on networked systems design and implementation (NSDI 23).
199–217.

[37] Xiangfeng Zhu, Weixin Deng, Banruo Liu, Jingrong Chen, Yongji
Wu, Thomas Anderson, Arvind Krishnamurthy, Ratul Mahajan, and
Danyang Zhuo. 2023. Application defined networks. In Proceedings of
the 22nd ACM Workshop on Hot Topics in Networks. 87–94.

[38] Xiangfeng Zhu, Guozhen She, Bowen Xue, Yu Zhang, Yongsu Zhang,
Xuan Kelvin Zou, XiongChun Duan, Peng He, Arvind Krishnamurthy,
Matthew Lentz, et al. 2023. Dissecting overheads of service mesh side-
cars. In Proceedings of the 2023 ACM Symposium on Cloud Computing.
142–157.

[39] Xiangfeng Zhu, Yuyao Wang, Banruo Liu, Yongtong Wu, Nikola Bo-
janic, Jingrong Chen, Gilbert Bernstein, Arvind Krishnamurthy, Sam
Kumar, Ratul Mahajan, and Danyang Zhuo. 2025. High-level Pro-
gramming for Application Networks. In 22nd USENIX Symposium on
Networked Systems Design and Implementation (NSDI 25).

7

https://istio.io/latest/blog/2021/proxyless-grpc/
https://istio.io/latest/blog/2021/proxyless-grpc/

	Abstract
	1 Introduction
	2 RPC Communication Overheads
	2.1 Existing Solutions

	3 Redesigning RPC Communication
	4 Key Research Questions
	5 Proposed Solution
	5.1 Programming Abstractions
	5.2 Custom RPC Layout and Transport
	5.3 End host stack and ANF

	6 Conclusion
	References

